Razor : A Low - Power Pipeline Based on Circuit - Level Timing
نویسندگان
چکیده
With increasing clock frequencies and silicon integration , power aware computing has become a critical concern in the design of embedded processors and systems-on-chip. One of the more effective and widely used methods for power-aware computing is dynamic voltage scaling (DVS). In order to obtain the maximum power savings from DVS, it is essential to scale the supply voltage as low as possible while ensuring correct operation of the processor. The critical voltage is chosen such that under a worst-case scenario of process and environmental variations, the processor always operates correctly. However, this approach leads to a very conservative supply voltage since such a worst-case combination of different variabilities will be very rare. In this paper, we propose a new approach to DVS, called Razor, based on dynamic detection and correction of circuit timing errors. The key idea of Razor is to tune the supply voltage by monitoring the error rate during circuit operation, thereby eliminating the need for voltage margins and exploiting the data dependence of circuit delay. A Razor flip-flop is introduced that double-samples pipeline stage values, once with a fast clock and again with a time-borrowing delayed clock. A metastability-tolerant com-parator then validates latch values sampled with the fast clock. In the event of a timing error, a modified pipeline mis-peculation recovery mechanism restores correct program state. A prototype Razor pipeline was designed in 0.18 µm technology and was analyzed. Razor energy overheads during normal operation are limited to 3.1%. Analyses of a full-custom multiplier and a SPICE-level Kogge-Stone adder model reveal that substantial energy savings are possible for these devices (up to 64.2%) with little impact on performance due to error recovery (less than 3%).
منابع مشابه
Low power and Area Efficient System with Fast Error Correction using Pulsed Latch
Aggressive reduction of timing margins, called timing speculation, is an effective way of reducing the supply voltage for a pipeline circuit and thereby its power consumption. However, probability of timing error increases with the voltage scaling and hence, the errors must be corrected with small cycle penalty. Here introduce an improved Razor approach by replacing flip flop by pulsed latch, w...
متن کاملضربکننده و ضربجمعکننده پیمانه 2n+1 برای پردازنده سیگنال دیجیتال
Nowadays, digital signal processors (DSPs) are appropriate choices for real-time image and video processing in embedded multimedia applications not only due to their superior signal processing performance, but also of the high levels of integration and very low-power consumption. Filtering which consists of multiple addition and multiplication operations, is one of the most fundamental operatio...
متن کاملA Power-efficient 32bit ARM ISA Processor using Timing- error Detection and Correction for Transient-error Tolerance and Adaptation to PVT Variation
Razor [1-3] is a hybrid technique for dynamic detection and correction of timing errors. A combination of error detecting circuits, and micro-architectural recovery mechanisms creates a system which is robust in the face of timing errors, and can be tuned to an efficient operating point by dynamically eliminating unused guardbands. Canary or tracking circuits [4-5] can compensate for certain ma...
متن کاملLow Dropout Based Noise Minimization of Active Mode Power Gated Circuit
Power gating technique reduces leakage power in the circuit. However, power gating leads to large voltage fluctuation on the power rail during power gating mode to active mode due to the package inductance in the Printed Circuit Board. This voltage fluctuation may cause unwanted transitions in neighboring circuits. In this work, a power gating architecture is developed for minimizing power in a...
متن کاملDesign and Simulation of a 2GHz, 64×64 bit Arithmetic Logic Unit in 130nm CMOS Technology
The purpose of this paper is to design a 64×64 bit low power, low delay and high speed Arithmetic Logic Unit (ALU). Arithmetic Logic Unit performs arithmetic operation like addition, multiplication. Adders play important role in ALU. For designing adder, the combination of carry lookahead adder and carry select adder, also add-one circuit have been used to achieve high speed and low area. In mu...
متن کامل